Recent advances in biofluid detection with micro/nanostructured bioelectronic devices.
Hu LiShaochun GuQianmin ZhangEnming SongTairong KuangFeng ChenXinge YuLingqian ChangPublished in: Nanoscale (2021)
Most biofluids contain a wide variety of biochemical components that are closely related to human health. Analyzing biofluids, such as sweat and tears, may deepen our understanding in pathophysiologic conditions associated with human body, while providing a variety of useful information for the diagnosis and treatment of disorders and disease. Emerging classes of micro/nanostructured bioelectronic devices for biofluid detection represent a recent breakthrough development of critical importance in this context, including traditional biosensors (TBS) and micro/nanostructured biosensors (MNBS). Related biosensors are not restricted to flexible and wearable devices; solid devices are also involved here. This article is a timely overview of recent technical advances in this field, with an emphasis on the new insights of constituent materials, design architectures and detection methods of MNBS that support the necessary levels of biocompatibility, device functionality, and stable operation for component analysis. An additional section discusses and analyzes the existing challenges, possible solutions and future development of MNBS for detecting biofluids.