Login / Signup

Latching dynamics as a basis for short-term recall.

Kwang Il RyomVezha BoboevaOleksandra SoldatkinaAlessandro Treves
Published in: PLoS computational biology (2021)
We discuss simple models for the transient storage in short-term memory of cortical patterns of activity, all based on the notion that their recall exploits the natural tendency of the cortex to hop from state to state-latching dynamics. We show that in one such model, and in simple spatial memory tasks we have given to human subjects, short-term memory can be limited to similar low capacity by interference effects, in tasks terminated by errors, and can exhibit similar sublinear scaling, when errors are overlooked. The same mechanism can drive serial recall if combined with weak order-encoding plasticity. Finally, even when storing randomly correlated patterns of activity the network demonstrates correlation-driven latching waves, which are reflected at the outer extremes of pattern space.
Keyphrases
  • working memory
  • endothelial cells
  • patient safety
  • adverse drug
  • functional connectivity