Login / Signup

Tunable Non-Kasha Behaviors and Excited-State Dynamics of Quadrupolar Squaraine Aggregates.

Nan ZhangLu LiuHaixia ChangKe LiuTaihong LiuLiping DingYu Fang
Published in: The journal of physical chemistry letters (2023)
Versatile coupling theories have been developed for rationalizing unusual aggregation phenomena of multipolar chromophores. Here, diverse excitonic couplings of a quadrupolar squaraine dye protonated by trifluoroacetic acid could be achieved and tuned unprecedentedly in different solvation media. Subtle changes of the solvent and ion pair influenced the aggregation of the donor-acceptor-donor (D-A-D)-type SQC6 and led to significant variations in optical properties. In contrast to conventional H/J aggregates, strong spectroscopic evidence of nonfluorescent and red-shifted hJ aggregation was obtained. Assumptions of the excitonic interplay with variable strength stabilized by the synergic contributions of π-π stacking and electronic interaction were addressed. Comparative excited-state dynamics in the aggregates clarified the distinctive excitonic coupling of adjacent quadrupolar molecules and the nature of the excited state beyond the dimers. Meanwhile, dominant two-photon absorption transitions could be elucidated by a resonance-enhanced mechanism. The present unusual molecular interplay provides a strategy to fine tune the optical properties of multipolar aggregates.
Keyphrases
  • energy transfer
  • ionic liquid
  • room temperature
  • molecular docking
  • molecular dynamics
  • molecular dynamics simulations
  • air pollution
  • computed tomography
  • single molecule