Deep learning networks based decision fusion model of EEG and fNIRS for classification of cognitive tasks.
Md Hasin Raihan RabbaniSheikh Md Rabiul IslamPublished in: Cognitive neurodynamics (2023)
The detection of the cognitive tasks performed by a subject during data acquisition of a neuroimaging method has a wide range of applications: functioning of brain-computer interface (BCI), detection of neuronal disorders, neurorehabilitation for disabled patients, and many others. Recent studies show that the combination or fusion of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) demonstrates improved classification and detection performance compared to sole-EEG and sole-fNIRS. Deep learning (DL) networks are suitable for the classification of large volume time-series data like EEG and fNIRS. This study performs the decision fusion of EEG and fNIRS. The classification of EEG, fNIRS, and decision-fused EEG-fNIRSinto cognitive task labels is performed by DL networks. Two different open-source datasets of simultaneously recorded EEG and fNIRS are examined in this study. Dataset 01 is comprised of 26 subjects performing 3 cognitive tasks: n-back, discrimination or selection response (DSR), and word generation (WG). After data acquisition, fNIRS is converted to oxygenated hemoglobin (HbO 2 ) and deoxygenated hemoglobin (HbR) in Dataset 01. Dataset 02 is comprised of 29 subjects who performed 2 tasks: motor imagery and mental arithmetic. The classification procedure of EEG and fNIRS (or HbO 2 , HbR) are carried out by 7 DL classifiers: convolutional neural network (CNN), long short-term memory network (LSTM), gated recurrent unit (GRU), CNN-LSTM, CNN-GRU, LSTM-GRU, and CNN-LSTM-GRU. After the classification of single modalities, their prediction scores or decisions are combined to obtain the decision-fused modality. The classification performance is measured by overall accuracy and area under the ROC curve (AUC). The highest accuracy and AUC recorded in Dataset 01 are 96% and 100% respectively; both by the decision fusion modality using CNN-LSTM-GRU. For Dataset 02, the highest accuracy and AUC are 82.76% and 90.44% respectively; both by the decision fusion modality using CNN-LSTM. The experimental result shows that decision-fused EEG-HbO 2 -HbR and EEG-fNIRSdeliver higher performances compared to their constituent unimodalities in most cases. For DL classifiers, CNN-LSTM-GRU in Dataset 01 and CNN-LSTM in Dataset 02 yield the highest performance.
Keyphrases