Login / Signup

Intralanthanide Separation on Layered Titanium(IV) Organophosphate Materials via a Selective Transmetalation Process.

Wenzhong ZhangSami HietalaLeonid KhriachtchevTimo HatanpääBhairavi DoshiRisto Koivula
Published in: ACS applied materials & interfaces (2018)
The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln3+ mixture. However, smaller Ln3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
Keyphrases
  • liquid chromatography
  • ionic liquid
  • single molecule
  • mass spectrometry
  • high resolution
  • high throughput
  • quantum dots
  • gold nanoparticles
  • smooth muscle