Login / Signup

Structural Basis for the Lipopolysaccharide Export Activity of the Bacterial Lipopolysaccharide Transport System.

Greg HicksZongchao Jia
Published in: International journal of molecular sciences (2018)
Gram-negative bacteria have a dense outer membrane (OM) coating of lipopolysaccharides, which is essential to their survival. This coating is assembled by the LPS (lipopolysaccharide) transport (Lpt) system, a coordinated seven-subunit protein complex that spans the cellular envelope. LPS transport is driven by an ATPase-dependent mechanism dubbed the "PEZ" model, whereby a continuous stream of LPS molecules is pushed from subunit to subunit. This review explores recent structural and functional findings that have elucidated the subunit-scale mechanisms of LPS transport, including the novel ABC-like mechanism of the LptB₂FG subcomplex and the lateral insertion of LPS into the OM by LptD/E. New questions are also raised about the functional significance of LptA oligomerization and LptC. The tightly regulated interactions between these connected subcomplexes suggest a pathway that can react dynamically to membrane stress and may prove to be a valuable target for new antibiotic therapies for Gram-negative pathogens.
Keyphrases
  • inflammatory response
  • gram negative
  • lps induced
  • anti inflammatory
  • toll like receptor
  • multidrug resistant
  • structural basis
  • protein kinase
  • transcription factor
  • immune response
  • minimally invasive
  • amino acid