Login / Signup

Antitumor Activities in Mouse Xenograft Models of Canine Fibroblastic Tumor by Defucosylated Mouse-Dog Chimeric Anti-HER2 Monoclonal Antibody (H77Bf).

Hiroyuki SuzukiTeizo AsanoTomokazu OhishiTakeo YoshikawaHiroyoshi SuzukiTakuya MizunoTomohiro TanakaManabu KawadaMika K KanekoYukinari Kato
Published in: Monoclonal antibodies in immunodiagnosis and immunotherapy (2022)
Human epidermal growth factor receptor 2 (HER2) is a cell surface type I transmembrane glycoprotein that is overexpressed on a variety of solid tumors and transduces the oncogenic signaling upon homo- and heterodimerization with HER families. Anti-HER2 monoclonal antibodies (mAbs) including trastuzumab and its antibody-drug conjugate have been shown to improve patients' survival in HER2-positive breast, gastric, and lung cancers. Canine tumors have advantages as naturally occurring tumor models, and share biological and histological characteristics with human tumors. In this study, we generated a defucosylated version of mouse-dog chimeric anti-HER2 mAb (H77Bf) derived from H 2 Mab-77 (mouse IgG 1 , kappa). H77Bf possesses the high binding affinity (a dissociation constant: 8.7 × 10 -10 M) for a dog HER2 (dHER2)-expressing canine fibroblastic tumor cell line (A-72). H77Bf exhibited antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity for A-72 cells. Moreover, intraperitoneal administration of H77Bf significantly suppressed the development of A-72 tumor compared with the control dog IgG in a mouse xenograft model. These results indicate that H77Bf exerts antitumor activities against dHER2-expressing canine cancers, which could provide a valuable information for canine cancer treatment.
Keyphrases