Login / Signup

2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2H4·H2O.

Dandan WuDandan WuChen GuQingsheng Wu
Published in: ACS applied materials & interfaces (2017)
An economical catalyst with excellent selectivity and high activity is eagerly desirable for H2 generation from the decomposition of N2H4·H2O. Here, a bifunctional two-dimensional NiFe/CeO2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni0.6Fe0.4/CeO2 nanocatalyst can show high activity for selectively catalyzing H2 generation (reaction rate (molN2H4 mol-1NiFe h-1): 5.73 h-1). As ceria is easily reducible from CeO2 to CeO2-x, the surface of CeO2 could supply an extremely large amount of Ce3+, and the high-density electrons of Ce3+ can work as Lewis base to facilitate the absorption of N2H4, which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H2 generation from N2H4·H2O.
Keyphrases
  • metal organic framework
  • highly efficient
  • reduced graphene oxide
  • high density
  • ionic liquid
  • room temperature
  • visible light
  • gene expression
  • transcription factor
  • dna methylation
  • photodynamic therapy