Login / Signup

Comparison of the effects of alfalfa meal and sorghum distillery residue supplementation on the methane emissions in black-feathered Taiwan native chicken.

Shin-Mei LeeNeng-Wen LoYan-Siang ChenJer-Yuh LiuYieng-How ChenJe-Chiuan Ye
Published in: Journal of animal science (2024)
The issue of global warming, primarily fueled by anthropogenic greenhouse gas (GHG) emissions, necessitates effective strategies to address methane (CH4) emissions from both ruminants and nonruminants. Drawing inspiration from successful approaches employed in ruminants, this study evaluates the impact of supplementing the diets of Taiwan's native black-feathered chickens with alfalfa meal and sorghum distillery residues (SDRs) on CH4 emissions. Using a respiration chamber the results reveal a significant reduction in CH4 emissions when incorporating either 30% alfalfa meal or 30% SDRs into the chicken diet, demonstrating a 59% and 49% decrease, respectively, compared to the control group (P < 0.05). Considering that alfalfa meal contains saponins and SDRs contain tannins, the study delves into the mechanism through which these components mitigate CH4 production in chickens. Incorporating saponins or tannins show that groups supplemented with these components exhibit significantly lower CH4 emissions compared to the control group (P < 0.05), with a consistent linear decrease as the concentration of the feed additive increases. Further in vitro analysis of chicken cecal contents indicates a proportional reduction in CH4 production with increasing levels of added saponins or tannins (P < 0.05). These findings suggest that the CH4-reducing effects of alfalfa meal and SDRs can be attributed to their saponins and tannin content. However, caution is warranted as excessive alfalfa meal supplementation may adversely impact poultry growth. Consequently, sorghum distillery residue emerges as a more suitable feed ingredient for mitigating CH4 emissions in Taiwan's native black-feathered chickens compared to alfalfa. Additionally, substituting SDRs for conventional commercial chicken feed not only reduces CH4 emissions but also enhances the utilization of by-products.
Keyphrases
  • room temperature
  • municipal solid waste
  • life cycle
  • heat stress
  • risk assessment
  • weight loss
  • body mass index
  • gene expression
  • dna methylation
  • carbon dioxide
  • sewage sludge