Extraction and Characterization of Hemicelluloses from a Softwood Acid Sulfite Pulp.
Pauline VincentFrédérique Ham-PichavantChristelle MichaudGérard MignaniSergio MastroianniHenri CramailStéphane GrelierPublished in: Polymers (2021)
Hemicelluloses were extracted from a softwood acid sulfite pulp in a three-step procedure. Further delignification step resulted in a holocellulose pulp containing only 1.7 wt.% of the lignin left. Cold caustic extraction (CCE) with 18 wt.% NaOH at 60 °C for 1 h was performed to solubilize hemicelluloses of the holocellulose. An unbleached cellulose pulp was then obtained 97% pure, which indicates that 89% of the hemicelluloses were removed. After purification, extraction yields between 1.1 wt.% and 9.5 wt.% were obtained from the delignified pulp and the hemicelluloses' chemical compositions and structures were investigated by 1H, 13C nuclear magnetic resonance spectroscopy (NMR) and two-dimensional NMR by correlation spectroscopy (2D-COSY) and proton-detected heteronuclear single-quantum correlation (2D-HSQC), high-performance anion-exchange chromatography coupled with a pulsed amperometry detector (HPAEC-PAD), size-exclusion chromatography coupled with a refractive index detector (SEC-RI) and thermogravimetric analyses (TGA). Hemicelluloses were obtained with a purity of 96%, with short cellulosic chains as the only residue. Sulfite pulping modified the hemicelluloses' structure, and it was found that two types of hemicelluloses were isolated, glucomannans, predominant at 67%, and methylglucuronoxylans. Finally, alkali-soluble hemicelluloses displayed relatively narrow size distributions and low molar masses, Mw varying between 18,900 and 30,000 g/mol after acid sulfite pulping.