Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers.
Songrui JiaShiying QiZhen XingShiyi LiQilin WangZheng ChenPublished in: Molecules (Basel, Switzerland) (2023)
In recent years, donor-acceptor (D-A)-type conjugated polymers have been widely used in the field of organic solar cells (OSCs) and electrochromism (EC). Considering the poor solubility of D-A conjugated polymers, the solvents used in material processing and related device preparation are mostly toxic halogenated solvents, which have become the biggest obstacle to the future commercial process of the OSC and EC field. Herein, we designed and synthesized three novel D-A conjugated polymers, PBDT1-DTBF, PBDT2-DTBF, and PBDT3-DTBF, by introducing polar oligo (ethylene glycol) (OEG) side chains of different lengths in the donor unit benzodithiophene (BDT) as side chain modification. Studies on solubility, optics, electrochemical, photovoltaic and electrochromic properties are conducted, and the influence of the introduction of OEG side chains on its basic properties is also discussed. Studies on solubility and electrochromic properties show unusual trends that need further research. However, since PBDT-DTBF-class polymers and acceptor IT-4F failed to form proper morphology under the low-boiling point solvent THF solvent processing, the photovoltaic performance of prepared devices is not ideal. However, films with THF as processing solvent showed relatively desirable electrochromic properties and films cast from THF display higher CE than CB as the solvent. Therefore, this class of polymers has application feasibility for green solvent processing in the OSC and EC fields. The research provides an idea for the design of green solvent-processable polymer solar cell materials in the future and a meaningful exploration of the application of green solvents in the field of electrochromism.