Login / Signup

Contribution of individual features to repetition suppression in macaque inferotemporal cortex.

Nathaniel P WilliamsCarl R Olson
Published in: Journal of neurophysiology (2022)
When an image is presented twice in succession, neurons in area TE of macaque inferotemporal cortex exhibit repetition suppression, responding less strongly to the second presentation than to the first. Suppression is known to occur if the adapter and the test image are subtly different from each other. However, it is not known whether cross suppression occurs between images that are radically different from each other but that share a subset of features. To explore this issue, we measured repetition suppression using colored shapes. On interleaved trials, the test image might be identical to the adapter, might share its shape or color alone, or might differ from it totally. At the level of the neuronal population as a whole, suppression was especially deep when adapter and test were identical, intermediate when they shared only one attribute, and minimal when they shared neither attribute. At the level of the individual neuron, the degree of suppression depended not only on the properties of the two images but also on the preferences of the neuron. Suppression was deeper when the repeated color or shape was preferred by the neuron than when it was not. This effect might arise from feature-specific adaptation or alternatively from adapter-induced fatigue. Both mechanisms conform to the principle that the degree of suppression is determined by the preferences of the neuron. NEW & NOTEWORTHY When an image is presented twice in rapid succession, neurons of inferotemporal cortex exhibit repetition suppression, responding less strongly to the second than to the first presentation. It has been unclear whether this phenomenon depends on the selectivity of the neuron under study. Here, we show that, for a given neuron, suppression is deepest when features preferred by that neuron are repeated. The results argue for a mechanism based either on feature-specific suppression or fatigue.
Keyphrases
  • deep learning
  • machine learning
  • microbial community
  • spinal cord
  • spinal cord injury
  • optical coherence tomography
  • case report
  • functional connectivity
  • blood brain barrier
  • endothelial cells
  • quantum dots
  • high glucose