Exploratory behaviour, memory and neurogenesis in the social Damaraland mole-rat (Fukomys damarensis).
Maria Kathleen OosthuizenPublished in: The Journal of experimental biology (2020)
Both exploratory behaviour and spatial memory are important for survival in dispersing animals. Exploratory behaviour is triggered by novel environments and having a better spatial memory of the surroundings provides an adaptive advantage to the animals. Spatial challenges can also affect neurogenesis in the hippocampus by increasing cell proliferation and enhancing survival of young neurons. In social Damaraland mole-rat colonies, the social hierarchy is largely based on body size. Individuals with different social statuses in these colonies display different dispersal behaviours and as behavioural differences have been linked to dispersal behaviour, I investigated exploratory behaviour, memory and hippocampal neurogenesis in wild-captured Damaraland mole-rats. Dispersal behaviour gives rise to differential exploratory behaviour in Damaraland mole-rats; they readily explored in a novel environment but resident, worker mole-rats explored more slowly. In the Y-maze, animals entered the escape hole significantly faster by the second day; however, they did not make fewer wrong turns with successive days of the experiment. Female dispersers did not show any improvement in time to reach the escape hole or the number of wrong turns over the 4 day experimental period. Damaraland male and female dispersers employ different dispersal strategies, and this is evident in their approach to the learning task. Females are less motivated to complete the task, leading to a difference in behaviour, and this has important survival implications for the different sexes. Finally, in the context of memory, adult neurogenesis does not seem to be a good marker in mole-rats as it is generally low and has not been investigated thoroughly enough to determine which and how other factors can influence it in these animals.