Login / Signup

A Deep Understanding on the Effective Generation of Twisted Intramolecular Charge Transfer by Protonation in Thiazolo[5,4- d ]thiazole Derivatives.

Fei YanDa LeiJiguang LiHaiming DuanXincun Dou
Published in: The journal of physical chemistry. A (2023)
The exploration of the intrinsic relationship between the phototautomerization and photoelectric properties is of great significance for the application of the emerging novel organic materials, such as the (bi)heterocyclic thiazolo[5,4- d ]thiazole derivatives (TzTz). Here, by introducing the chemical-controlling protonation, a barrierless spontaneous rotation movement of the designed TzTz derivative (2,5-diyl-amino-thiazolo[5,4- d ]thiazole, DA-TzTz) was ensured through the facilitation of the excited-state intramolecular proton transfer (ESIPT) triggered twisted intramolecular charge transfer (TICT) process by the enhancement of the intramolecular hydrogen bonds, steric hindrance effect, and conjugative effect. It is further verified that the hetero S atoms could mostly effect the proton accepting ability of -N═ through comparing with the influences to the intramolecular H-bond between the protonated/nonprotonated amino groups and the -N═ atoms brought by the replacement of them with N or O atoms. As a result, the dissociation and rearrangement of the π conjugation in DA-TzTz accompanying with the variation of the optoelectronic characteristics was benefited from the establishment of the preferential charge-transfer and separation. We expect this tentative study could establish a new concept of designing an efficient charge-transfer and separation method, paving the way for the development of the TzTz derivatives and other optoelectronic organic materials.
Keyphrases
  • electron transfer
  • antibiotic resistance genes