Ameliorative potential of manganese nanoparticles with low-level ionizing radiation against experimentally induced hepatocarcinogenesis.
Nahed Abdel-AzizSawsan M El-SonbatyMarwa G A HegazyPublished in: Environmental science and pollution research international (2021)
Nanotechnology is a rich field with infinite possibilities of drug designs for cancer treatment. We aimed to biosynthesize manganese nanoparticles (Mn NPs) using Lactobacillus helveticus to investigate its anticancer synergistic effect with low-dose gamma radiation on HCC-induced rats. Diethylnitrosamine (DEN) (20 mg/kg BW, 5 times a week for 6 weeks) induced HCC in rats. Rats received Mn NPs (5 mg/kg BW/day) by gastric gavage over 4 weeks concomitant with single dose of gamma radiation (γ-R) (0.25 Gy). Characterization, cytotoxicity, and anticancer activity of Mn NPs were evaluated. DEN-induced significant liver dysfunction (alanine transaminase activity ALT, total proteins, and albumin levels) associated with significant increase in lipid peroxidation levels with reduction in super oxide dismutase activity. Furthermore, DEN intoxication is sponsored for remarkable increase in levels of Alfa-fetoprotein, tumor necrosis factor α, vascular endothelial growth factor, and transforming growth factor beta with remarkable decrease in caspase 3 and cytochrome c. Treatment with Mn NPs (4.98-11.58 nm) and single dose gamma radiation evoked significant repair in ALT, total protein, and albumin accompanied with balanced oxidative status, diminished inflammatory biomarkers, angiogenic factor, and growth factor with restoration in apoptotic factors. Mn NPs revealed obvious in vitro cytotoxic activity against HepG2 cell line in a dose-dependent manner. Our findings were well appreciated with the histopathological study. In conclusion, a new approach of the single or combined use of Mn NPs with low-dose γ-radiation regimens as promising paradigm for HCC treatment is recommended.
Keyphrases
- low dose
- high glucose
- growth factor
- diabetic rats
- transforming growth factor
- vascular endothelial growth factor
- oxide nanoparticles
- room temperature
- oxidative stress
- drug induced
- endothelial cells
- high dose
- metal organic framework
- epithelial mesenchymal transition
- photodynamic therapy
- emergency department
- clinical trial
- transition metal
- climate change
- ionic liquid
- binding protein