Login / Signup

Completely Amine-Free Open-Atmospheric Synthesis of High-Quality Cesium Lead Bromide (CsPbBr3 ) Perovskite Nanocrystals.

Syed AkhilV G Vasavi DuttNimai Mishra
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Cesium lead halide perovskite nanocrystals (NCs) CsPbX3 (X=Cl, Br, and I) have been prominent materials in the last few years due to their high photoluminescence quantum yield (PLQY) for light-emitting diodes and other significant applications in photovoltaics and optoelectronics. In colloidal CsPbX3 synthesis, the most commonly used ligands are oleic acid and oleylamine. The latter plays an important role in surface passivation but may also be responsible for poor colloidal stability as a result of facile proton exchange leading to the formation of labile oleylammonium halide, which pulls halide ions out of the NC surface. Herein, a facile, efficient, completely amine-free synthesis of cesium lead bromide perovskite nanocrystals using hydrobromic acid as halide source and tri-n-octylphosphane as ligand under open-atmospheric conditions is demonstrated. Hydrobromic acid serves as labile source of bromide ion, and thus this three-precursor approach (separate precursors for Cs, Pb, Br) gives more control than a conventional single-source precursor for Pb and Br (PbBr2 ). The use of HBr paved the way to eliminate oleylamine, and thus the formation of labile oleylammonium halide can be completely excluded. Various Cs:Pb:Br molar ratios were studied and optimum conditions for making very stable CsPbBr3 NCs with high PLQY were found. These completely amine-free CsPbBr3 perovskite NCs synthesized under bromine-rich conditions exhibit good stability and durability for more than three months in the form of colloidal solutions and films, respectively. Furthermore, stable tunable emission across a wide spectral range through anion exchange was demonstrated. More importantly, this work reports open-atmosphere-stable CsPbBr3 NCs films exhibiting strong PL, which can be further used for optoelectronic device applications.
Keyphrases