Login / Signup

3D Asymmetric Bilayer Garnet-Hybridized High-Energy-Density Lithium-Sulfur Batteries.

Changmin ShiTanner HamannSaya TakeuchiGeorge V AlexanderAdelaide M NolanMatthew LimpertZhezhen FuJonathan O'NeillGriffin GodbeyJoseph A DuraEric D Wachsman
Published in: ACS applied materials & interfaces (2022)
Lithium garnet Li 7 La 3 Zr 2 O 12 (LLZO), with high ionic conductivity and chemical stability against a Li metal anode, is considered one of the most promising solid electrolytes for lithium-sulfur batteries. However, an infinite charge time resulting in low capacity has been observed in Li-S cells using Ta-doped LLZO (Ta-LLZO) as a solid electrolyte. It was observed that this cell failure is correlated with lanthanum segregation to the surface of Ta-LLZO that reacts with a sulfur cathode. We demonstrated this correlation by using lanthanum excess and lanthanum deficient Ta-LLZO as the solid electrolyte in Li-S cells. To resolve this challenge, we physically separated the sulfur cathode and LLZO using a poly(ethylene oxide) (PEO)-based buffer interlayer. With a thin bilayer of LLZO and the stabilized sulfur cathode/LLZO interface, the hybridized Li-S batteries achieved a high initial discharge capacity of 1307 mA h/g corresponding to an energy density of 639 W h/L and 134 W h/kg under a high current density of 0.2 mA/cm 2 at room temperature without any indication of a polysulfide shuttle. By simply reducing the LLZO dense layer thickness to 10 μm as we have demonstrated before, a significantly higher energy density of 1308 W h/L and 257 W h/kg is achievable. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the PEO-based interlayer, which physically separates the sulfur cathode and LLZO, is both chemically and electrochemically stable with LLZO. In addition, the PEO-based interlayer can adapt to the stress/strain associated with sulfur volume expansion during lithiation.
Keyphrases