The transition from bee-to-fly dominated communities with increasing elevation and greater forest canopy cover.
Lindsie M McCabeElla ColellaPaige ChesshireDave SmithNeil S CobbPublished in: PloS one (2019)
Insect pollinator communities are thought to transition from bee-dominated communities at low elevations to fly-dominated communities at high elevations. We predicted that increased tree canopy cover and a subsequent decrease in meadows and flowering plants would limit bees but not flies at higher elevations. We tested and supported this prediction by examining changes in both abundance and species richness for 128 bee species and 96 fly species at key points along an elevational gradient in Northern Arizona represented by distinct vegetation life zones. In addition to an increase in fly species and abundance relative to bees with increasing elevation, there were changes in community structure). To better understand factors that might influence this transition we examined how tree canopy cover changed along the elevational gradient and how this influenced the change in insect pollinator communities. While bee communities were progressively divergent between forest and meadow habitats with increasing elevation and tree canopy cover, there was no significant pattern with flies between meadow and forest habitats. However, fly abundance did increase with increasing elevation relative to bees. Along a comparable elevational gradient on an adjacent mountain with no tree canopy cover (i.e., a fire burned mountain), the bee-to-fly transition did not occur; bees persisted as the dominant pollinator into the highest life zone. This suggests that tree canopy cover can in part explain the transition from bee-to fly-dominated communities. In conclusion, this is the first study in North America to document a bee-fly transition for both abundance and species richness and show that tree canopy cover may play a role in determining pollinator community composition, by restricting bees to open meadow habitats.