Login / Signup

Cross-sectional study to estimate the prevalence of enterohaemorrhagic Escherichia coli on hides of market beef cows at harvest.

Liesel G SchneiderZachary R StrombergG L LewisR A MoxleyD R Smith
Published in: Zoonoses and public health (2018)
Cattle hides are an important source of enterohaemorrhagic Escherichia coli (EHEC) carcass contamination at slaughter. Seven EHEC serogroups are adulterants in raw, non-intact beef: EHEC O26, O45, O103, O111, O121, O145 and O157. The objective of this study was to estimate the probability for hide contamination with EHEC among US market beef cows at slaughter and to test the effects of season and geographic region on prevalence of hide contamination. Hides (n = 800) of market cows were swabbed at slaughter immediately after exsanguination, prior to hide removal. Cows were sampled from two geographically distinct beef packing plants during four seasons of 2015. Cattle source was categorized by northern or southern region. Samples were tested for EHEC by a molecular screening assay. The effects of region, season and their interaction on the probability of hide contamination by each EHEC serogroup were tested in separate multilevel multivariable logistic regression models, accounting for the random effect of clustering by plant. Statistical significance was set α = .05. Of 800 total samples, at least one EHEC was detected on 630 (79%) hides. Enterohaemorrhagic E. coli O26 was detected on 129 (16%) of all hides sampled, EHEC O45 on 437 (55%), EHEC O103 on 289 (36%), EHEC O111 on 189 (24%), EHEC O121 on 140 (18%), EHEC O145 on 171 (21%) and EHEC O157 on 89 (11%). Detection of EHEC O26 and EHEC O121 was associated with season. Season and region were associated with detecting EHEC O45 and EHEC O157. Season-by-region interactions were associated with the outcome of detecting EHEC O103, EHEC O111 and EHEC O145. Season, region of origin and the interaction of these factors affect hide contamination of market beef cattle at slaughter by EHEC, and each serogroup responds to these factors uniquely.
Keyphrases
  • escherichia coli
  • risk assessment
  • drinking water
  • health insurance
  • staphylococcus aureus
  • climate change
  • human health
  • sensitive detection