Login / Signup

Have superfetation and matrotrophy facilitated the evolution of larger offspring in poeciliid fishes?

Claudia Olivera-TlahuelAlison G Ossip-KleinHéctor S Espinosa-PérezJ Jaime Zúñiga-Vega
Published in: Biological journal of the Linnean Society. Linnean Society of London (2015)
Superfetation is the ability of females to simultaneously carry multiple broods of embryos, with each brood at a different developmental stage. Matrotrophy is the post-fertilization maternal provisioning of nutrients to developing embryos throughout gestation. Several studies have demonstrated that, in viviparous fishes, superfetation and matrotrophy have evolved in a correlated way, such that species capable of bearing several simultaneous broods also exhibit advanced degrees of post-fertilization provisioning. The adaptive value of the concurrent presence of both reproductive modes may be associated with the production of larger newborns, which in turn may result in enhanced offspring fitness. In this study, we tested two hypotheses: (1) species with superfetation and moderate or extensive matrotrophy give birth to larger offspring compared to species without superfetation or matrotrophy; (2) species with higher degrees of superfetation and matrotrophy (i.e. more simultaneous broods and increased amounts of post-fertilization provisioning) give birth to larger offspring compared to species with relatively low degrees of superfetation and matrotrophy (i.e. fewer simultaneous broods and lesser amounts of post-fertilization provisioning). Using different phylogenetic comparative methods and data on 44 species of viviparous fishes of the family Poeciliidae, we found a lack of association between offspring size and the combination of superfetation and matrotrophy. Therefore, the concurrent presence of superfetation and moderate or extensive matrotrophy has not facilitated the evolution of larger offspring. In fact, these traits have evolved differently. Superfetation and matrotrophy have accumulated gradual changes that largely can be explained by Brownian motion, whereas offspring size has evolved fluidly, experiencing changes that likely resulted from selective responses to the local conditions.
Keyphrases