Regularized logistic regression for obstructive sleep apnea screening during wakefulness using daytime tracheal breathing sounds and anthropometric information.
Farahnaz HajipourMohammad Jafari JozaniAhmed ElwaliZahra K MoussaviPublished in: Medical & biological engineering & computing (2019)
Obstructive sleep apnea (OSA) is a prevalent health problem. Developing a technology for quick OSA screening is momentous. In this study, we used regularized logistic regression to predict the OSA severity level of 199 individuals (116 males) with apnea/hypopnea index (AHI) ≥ 15 (moderate/severe OSA) and AHI < 5 (non-OSA) using their tracheal breathing sounds (TBS) recorded during daytime, while they were awake. The participants were guided to breathe through their nose, and then through their mouth at their deep breathing rate. The least absolute shrinkage and selection operator (LASSO) feature selection approach was used to select the discriminative features from the power spectra of the TBS and the anthropometric information. Using a five-fold cross-validation procedure, five different training sets and their corresponding blind-testing sets were formed. The average blind-testing classification accuracy over the five different folds was found to be 79.3% ± 6.1 with the sensitivity (specificity) of 82.2% ± 7.2% (75.8% ± 9.9%). The accuracy for the entire dataset was found to be 81.1% with sensitivity (specificity) of 84.4% (77.0%). The feature selection and classification procedures were intelligible and fast. The selected features were physiologically meaningful. Overall, the results show that TBS analysis can be used as a quick and reliable prediction of the presence and severity of OSA during wakefulness without a sleep study. Graphical abstract Wakefulness screening of obstructive sleep apnea using tracheal breathing sounds and anthropometric information by means of regularized logistic regression with the least absolute shrinkage and selection operator approach for feature selection and classification.