Some Recent Advances in Density-Based Reactivity Theory.
Xin HeMeng LiChunying RongDongbo ZhaoWenjian LiuPaul W AyersShubin LiuPublished in: The journal of physical chemistry. A (2024)
Establishing a chemical reactivity theory in density functional theory (DFT) language has been our intense research interest in the past two decades, exemplified by the determination of steric effect and stereoselectivity, evaluation of electrophilicity and nucleophilicity, identification of strong and weak interactions, and formulation of cooperativity, frustration, and principle of chirality hierarchy. In this Featured Article, we first overview the four density-based frameworks in DFT to appreciate chemical understanding, including conceptual DFT, use of density associated quantities, information-theoretic approach, and orbital-free DFT, and then present a few recent advances of these frameworks as well as new applications from our studies. To that end, we will introduce the relationship among these frameworks, determining the entire spectrum of interactions with Pauli energy derivatives, performing topological analyses with information-theoretic quantities, and extending the density-based frameworks to excited states. Applications to examine physiochemical properties in external electric fields and to evaluate polarizability for proteins and crystals are discussed. A few possible directions for future development are followed, with the special emphasis on its merger with machine learning.