Free Radical and Nicotine Yields in Mainstream Smoke of Chinese Marketed Cigarettes: Variation with Smoking Regimens and Cigarette Brands.
Xiaoning LeiReema GoelDongxiao SunGurkirat BhanguZachary T BitzerNeil TrushinLin MaJohn P RichieGuangli XiuJoshua E MuscatPublished in: Chemical research in toxicology (2020)
Free radicals and nicotine are components of cigarette smoke that are thought to contribute to the development of smoking-induced diseases. China has the largest number of smokers in the world, yet little is known about the yields of tobacco smoke constituents in different Chinese brands of cigarettes. In this study, gas-phase and particulate-phase free radicals as well as nicotine yields were quantified in mainstream cigarette smoke from five popular Chinese brands and two research cigarettes (3R4F and 1R6F). Mainstream smoke was generated under International Organization of Standardization (ISO) and Canadian Intense (CI) smoking regimens using a linear smoking machine. Levels of free radicals and nicotine were measured by electron paramagnetic resonance spectroscopy (EPR) and gas chromatography with flame-ionization detection, respectively. Under the ISO puffing regimen, Chinese brand cigarettes produced an average of 3.0 ± 1.2 nmol/cig gas-phase radicals, 118 ± 44.7 pmol/cig particulate-phase radicals, and 0.6 ± 0.2 mg/cig nicotine. Under the CI puffing regimen, Chinese brand cigarettes produced an average of 5.6 ± 1.2 nmol/cig gas-phase radicals, 282 ± 92.1 pmol/cig particulate-phase radicals, and 2.1 ± 0.4 mg/cig nicotine. Overall, both gas- and particulate-phase free radicals were substantially lower compared to the research cigarettes under both regimens, whereas no significant differences were observed for nicotine levels. When Chinese brands were compared, the highest free radical and nicotine yields were found in "LL" and "BS" brands, while lowest levels were found in "YY". These results suggested that the lower radical delivery by Chinese cigarettes compared to United States reference cigarettes may be associated with reductions in oxidant-related harm.