Login / Signup

High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers.

Cheong Hoon KwonYongmin KoDongyeeb ShinMinseong KwonJinho ParkWan Ki BaeSeung Woo LeeJinhan Cho
Published in: Nature communications (2018)
Electrical communication between an enzyme and an electrode is one of the most important factors in determining the performance of biofuel cells. Here, we introduce a glucose oxidase-coated metallic cotton fiber-based hybrid biofuel cell with efficient electrical communication between the anodic enzyme and the conductive support. Gold nanoparticles are layer-by-layer assembled with small organic linkers onto cotton fibers to form metallic cotton fibers with extremely high conductivity (>2.1×104 S cm-1), and are used as an enzyme-free cathode as well as a conductive support for the enzymatic anode. For preparation of the anode, the glucose oxidase is sequentially layer-by-layer-assembled with the same linkers onto the metallic cotton fibers. The resulting biofuel cells exhibit a remarkable power density of 3.7 mW cm-2, significantly outperforming conventional biofuel cells. Our strategy to promote charge transfer through electrodes can provide an important tool to improve the performance of biofuel cells.
Keyphrases