Login / Signup

A multiphase flux balance model reveals flexibility of central carbon metabolism in guard cells of C3 plants.

X L Joshua TanChun Yue Maurice Cheung
Published in: The Plant journal : for cell and molecular biology (2020)
Experimental research into guard cell metabolism has revealed the roles of the accumulation of various metabolites in guard cell function, but a comprehensive understanding of their metabolism over the diel cycle is still incomplete due to the limitations of current experimental methods. In this study we constructed a four-phase flux balance model of guard cell metabolism to investigate the changes in guard cell metabolism over the diel cycle, including the day and night and stomatal opening and closing. Our model predicted metabolic flexibility in guard cells of C3 plants, showing that multiple metabolic processes can contribute to the synthesis and metabolism of malate and sucrose as osmolytes during stomatal opening and closing. Our model showed the possibility of guard cells adapting to varying light availability and sucrose uptake from the apoplast during the day by operating in a mixotrophic mode with a switch between sucrose synthesis via the Calvin-Benson cycle and sucrose degradation via the oxidative pentose phosphate pathway. During stomatal opening, our model predicted an alternative flux mode of the Calvin-Benson cycle with all dephosphorylating steps diverted to diphosphate-fructose-6-phosphate 1-phosphotransferase to produce inorganic pyrophosphate, which is used to pump protons across the tonoplast for the accumulation of osmolytes. An analysis of the energetics of the use of different osmolytes in guard cells showed that malate and Cl- are similarly efficient as the counterion of K+ during stomatal opening.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • single cell
  • cell therapy
  • endoplasmic reticulum stress
  • oxidative stress
  • signaling pathway
  • ms ms
  • mesenchymal stem cells
  • cell proliferation
  • depressive symptoms