Login / Signup

Quantitative Real-Time Analysis of Living Materials by Stimulated Raman Scattering Microscopy.

Chenxi QianHanwei LiuPriya K ChitturRahuljeet S ChadhaYuxing YaoJulia A KornfieldDavid A TirrellLu Wei
Published in: Analytical chemistry (2024)
Composite materials built in part from living organisms have the potential to exhibit useful autonomous, adaptive, and self-healing behavior. The physicochemical, biological, and mechanical properties of such materials can be engineered through the genetic manipulation of their living components. Successful development of living materials will require not only new methods for design and preparation but also new analytical tools that are capable of real-time noninvasive mapping of chemical compositions. Here, we establish a strategy based on stimulated Raman scattering microscopy to monitor phosphatase-catalyzed mineralization of engineered bacterial films in situ. Real-time label-free imaging elucidates the mineralization process, quantifies both the organic and inorganic components of the material as functions of time, and reveals spatial heterogeneity at multiple scales. In addition, we correlate the mechanical performance of films with the extent of mineralization. This work introduces a promising strategy for quantitatively analyzing living materials, which should contribute to the accelerated development of such materials in the future.
Keyphrases
  • label free
  • high resolution
  • room temperature
  • single molecule
  • high throughput
  • optical coherence tomography
  • risk assessment
  • climate change
  • copy number
  • protein kinase