Green and efficient procedures are essential for the chemoselective hydrogenation of functionalized nitroarenes to form industrially important anilines. Herein, it is shown that visible-light-driven, chemoselective hydrogenation of functionalized nitroarenes with groups sensitive to forming anilines can be achieved in good to excellent yields (82-100 %) in water under relatively mild conditions and catalyzed by low-cost and recyclable graphitic carbon nitride. The process is also applicable to gram-scale reaction, with a yield of aniline of 86 %. A study of the mechanism reveals that visible-light-induced electrons are responsible for the hydrogenation reactions, and thermal energy can also promote the photocatalytic activity. A study of the kinetics shows that this reaction possibly occurs through one-step hydrogenation or stepwise condensation routes. A wide range of applications can be expected for this green, efficient, and highly selective photocatalysis system in reduction reactions for the synthesis of fine chemicals.