Bioactive Ion-Based Switchable Supercapacitors.
Panlong LiYannik BräunigerJonas KunigkeitHanfeng ZhouMaria Rita Ortega VegaEn ZhangJulia GrotheEike BrunnerStefan KaskelPublished in: Angewandte Chemie (International ed. in English) (2022)
Switchable supercapacitors (SCs) enable a reversible electrically-driven uptake/release of bioactive ions by polarizing porous carbon electrodes. Herein we demonstrate the first example of a bioactive ion-based switchable supercapacitor. Based on choline chloride and porous carbons we unravel the mechanism of physisorption vs. electrosorption by nuclear magnetic resonance, Raman, and impedance spectroscopy. Weak physisorption facilitates electrically-driven electrolyte depletion enabling the controllable uptake/release of electrolyte ions. A new 4-terminal device is proposed, with a main capacitor and a detective capacitor for monitoring bioactive ion adsorption in situ. Ion-concentration control in printed choline-based switchable SCs realizes switching down to 8.3 % residual capacitance. The exploration of adsorption mechanisms in printable microdevices will open an avenue of manipulating bioactive ions for the application of drug delivery, neuromodulation, or neuromorphic devices.