Login / Signup

Rodent responses to volatile compounds provide insights into the function of floral scent in mammal-pollinated plants.

Steven D JohnsonKeeveshnee Govender
Published in: Philosophical transactions of the Royal Society of London. Series B, Biological sciences (2022)
Flowers pollinated by mammals have evolved in many plant families. Several scent compounds that attract bats to flowers have been identified, but the chemical ecology of pollination mutualisms between plants and ground-dwelling mammals is poorly understood. Rodents are key pollinators in South Africa and rely heavily on olfaction to locate food. Our aim was to identify compounds that may function to attract rodents to flowers. Eighteen volatile compounds, including 14 that are prominent in the scent of rodent-pollinated flowers, were used in choice experiments involving wild-caught individuals of four native rodent species. Rodents were generally attracted to oxygenated aliphatic compounds, specifically ketones and esters, but not to some aromatic compounds common in floral scents of insect-pollinated species, nor to a sulfide compound that is attractive to bats. Associative conditioning using sugar solution as a reward had only weak effects on the attractiveness of compounds to rodents. The attractive effect of some compounds disappeared when they were blended with compounds that did not attract rodents. We conclude that aliphatic ketones and esters are likely to play a key role in attracting rodents to flowers. Deployment of these compounds may allow plants to exploit rodent sensory bias that evolved in other contexts such as intra-specific communication and searching for seeds. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Keyphrases
  • healthcare
  • public health
  • mental health
  • zika virus
  • social media
  • high resolution
  • climate change
  • amino acid
  • men who have sex with men
  • prefrontal cortex