Login / Signup

Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information.

Matthew McTeerDouglas ApplegatePeter MesenbrinkVlad RatziuJörn M SchattenbergElisabetta BugianesiAndreas GeierManuel Romero GomezJean-Francois DufourMattias EkstedtSven M FrancqueHannele Yki-JarvinenMichael AllisonLuca Vittorio ValentiLuca MieleMichael PavlidesJeremy CobboldGeorgios PapatheodoridisAdriaan G HolleboomDina TiniakosClifford BrassQuentin Mark AnsteePaolo Missiernull null
Published in: PloS one (2024)
This study developed a series of ML models of accuracy ranging from 71.9-99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
Keyphrases
  • machine learning
  • health information
  • lymph node
  • pet ct
  • artificial intelligence
  • type diabetes
  • healthcare
  • metabolic syndrome