Login / Signup

Cross-Neutralization of SARS-CoV-2-Specific Antibodies in Convalescent and Immunized Human Sera against the Bat and Pangolin Coronaviruses.

Kanjana SrisutthisamphanJanya SaenboonruengAsawin WanitchangRatchanont ViriyakitkosolAnan Jongkaewwattana
Published in: Viruses (2022)
Coronaviruses isolated from bats and pangolins are closely related to SARS-CoV-2, the causative agent of COVID-19. These so-called sarbecoviruses are thought to pose an acute pandemic threat. As SARS-CoV-2 infection and vaccination have become more widespread, it is not known whether neutralizing antibodies to SARS-CoV-2 can cross-neutralize coronaviruses transmitted by bats or pangolins. In this study, we analyzed antibody-mediated neutralization with serum samples from COVID-19 patients ( n = 31) and those immunized with inactivated SARS-CoV-2 vaccines ( n = 20) against lentivirus-based pseudo-viruses carrying the spike derived from ancestral SARS-CoV-2, bat (RaTG13 or RshSTT182), or pangolin coronaviruses (PCoV-GD). While SARS-CoV-2, PCoV-GD, and RshSTT182 spikes could promote cell-cell fusion in VeroE6 cells, the RaTG13 spike did not. RaTG13, on the other hand, was able to induce cell-cell fusion in cells overexpressing ACE2. Dramatic differences in neutralization activity were observed, with the highest level observed for RaTG13, which was even significantly higher than SARS-CoV-2, PCoV-GD, and RshSTT182 pseudo-viruses. Interestingly, pseudo-viruses containing the chimeric protein in which the receptor-binding domain (RBD) of PCoV-GD spike was replaced by that of RaTG13 could be strongly neutralized, whereas those carrying RaTG13 with the RBD of PCoV-GD were significantly less neutralized. Because the high neutralizing activity against RaTG13 appears to correlate with its low affinity for binding to the human ACE2 receptor, our data presented here might shed light on how pre-existing immunity to SARS-CoV-2 might contribute to protection against related sarbecoviruses with potential spillover to the human host.
Keyphrases