Login / Signup

How plant roots respond to waterlogging.

Kevin DanielSjon Hartman
Published in: Journal of experimental botany (2023)
Plant submergence is a major abiotic stress that impairs plant performance. Underwater, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss the current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Keyphrases
  • endothelial cells
  • cell wall
  • oxidative stress
  • transcription factor
  • mass spectrometry
  • stress induced
  • cell proliferation
  • room temperature
  • human health
  • genome wide identification