Login / Signup

Effect of TiO2 Concentration on Microstructure and Properties of Composite Cu-Sn-TiO2 Coatings Obtained by Electrodeposition.

Aliaksandr A KasachDzmitry S KharytonauAndrei V PaspelauJacek RylDenis S SergievichIvan M ZharskiiIrina I Kurilo
Published in: Materials (Basel, Switzerland) (2021)
In this work, Cu-Sn-TiO2 composite coatings were electrochemically obtained from a sulfate bath containing 0-10 g/L of TiO2 nanoparticles. The effect of TiO2 particles on kinetics of cathodic electrodeposition has been studied by linear sweep voltammetry and chronopotentiometry. As compared to the Cu-Sn alloy, the Cu-Sn-TiO2 composite coatings show rougher surfaces with TiO2 agglomerates embedded in the metal matrix. The highest average amount of included TiO2 is 1.7 wt.%, in the case of the bath containing 5 g/L thereof. Composite coatings showed significantly improved antibacterial properties towards E. coli ATCC 8739 bacteria as compared to the Cu-Sn coatings of the same composition. Such improvement has been connected with the corrosion resistance of the composites studied by linear polarization and electrochemical impedance spectroscopy. In the bacterial media and 3% NaCl solutions, Cu-Sn-TiO2 composite coatings have lower corrosion resistance as compared to Cu-Sn alloys, which is caused by the nonuniformity of the surface.
Keyphrases