Incorporating Noncovalent Interactions in Transfer Learning Gaussian Process Regression Models for Molecular Simulations.
Matthew L BrownBienfait K IsamuraJonathan Michael SkeltonPaul L A PopelierPublished in: Journal of chemical theory and computation (2024)
FFLUX is a quantum chemical topology-based multipolar force field that uses Gaussian process regression machine learning models to predict atomic energies and multipole moments on the fly for fast and accurate molecular dynamics simulations. These models have previously been trained on monomers, meaning that many-body effects, for example, intermolecular charge transfer, are missed in simulations. Moreover, dispersion and repulsion have been modeled using Lennard-Jones potentials, necessitating careful parametrization. In this work, we take an important step toward addressing these shortcomings and show that models trained on clusters, in this case, a dimer, can be used in FFLUX simulations by preparing and benchmarking a formamide dimer model. To mitigate the computational costs associated with training higher-dimensional models, we rely on the transfer of hyperparameters from a smaller source model to a larger target model, enabling an order of magnitude faster training than with a direct learning approach. The dimer model allows for simulations that account for two-body effects, including intermolecular polarization and charge penetration, and that do not require nonbonded potentials. We show that addressing these limitations allows for simulations that are closer to quantum mechanics than previously possible with the monomeric models.