Login / Signup

Study of Fiber-Based Wearable Energy Systems.

Xiao-Ming Tao
Published in: Accounts of chemical research (2019)
Fiber-based electronic and photonic devices have the most desired human-friendly features, such as being soft, ubiquitous, flexible, stretchable, light, and permeable, and thus are ideal to be employed as the interface platform between humans, the environment, and machines. Today, these smart wearable devices are normally powered by rechargeable batteries. It is extremely desirable to have an undisrupted power supply for us to go anywhere at any time. Harvesting energy from the ambient environment or our body can potentially fulfill such a goal. Explorations of high performance, flexible functional materials and energy conversion devices have led many exiting discoveries. In order to realize their applications, equally important are fundamental studies of the physical phenomena and mechanisms that will provide scientific guidance for the direction of exploration and development of devices and systems. Hence, this Account provides a brief review of our recent progress in this topic area. Based upon materials science, mechanics and device physics, we have succeeded in establishment of several new theoretical models for fiber-based piezoelectric, triboelectric, and hybrid generators. These models have been verified experimentally. Excellent results were obtained for fiber-based triboelectric generators without any adjustable parameters. Reasonable agreement was demonstrated for the piezoelectric generators because of some uncertainty in the material properties and deformation modes. From both simulated and experimental results, we did not detect any synergic effect in the hybrid generator consisting of cascaded piezoelectric and triboelectric units. The verified models can be used to predict the output voltage, current, and power of the devices in terms of material properties, parameters of device structure, harvesting circuits, and operating conditions. Furthermore, by considering the electric breakdown due to field-induced-emission and gas-ionization, we have identified the theoretical upper limits of charge density and output power from contact-mode fiber-based triboelectric nanogenerators. The analysis sheds new light on the scope and focus for further exploration and provides guidance on engineering design of such devices. In addition, we have setup an experimental platform for reliable triboelectric charge measurement of highly deformable and porous materials like fabrics. An extended triboelectric series has been reported by us including 21 types of commercial and new fibers. Based upon the findings, we have made significant improvements of the performance of these energy harvesting devices. Finally, we have explored a class of new flexible thermoelectric materials exhibiting high performance for fiber-based thermoelectric generators, which can be fabricated by low-temperature and cost-effective processes, such as in situ reduction coating and three-dimensional printing. The resultant large-area, flexible, and wearable fiber-base thermoelectric generators are key devices for great potential applications such as powering wearable microelectronic systems, active microclimate regulating systems, and waste thermal energy harvesting.
Keyphrases
  • heart rate
  • endothelial cells
  • high throughput
  • solid state
  • climate change
  • diabetic rats
  • energy transfer
  • risk assessment
  • oxidative stress
  • mass spectrometry
  • high glucose
  • single cell
  • ionic liquid
  • data analysis
  • low cost