Login / Signup

Double-Tetrahedral DNA Probe Functionalized Ag Nanorod Biointerface for Effective Capture, Highly Sensitive Detection, and Nondestructive Release of Circulating Tumor Cells.

Jinxiang LiYugang YuanHongyu GanChen DongBin CaoJin-Liang NiXueliang LiWenjie GuChunyuan SongLian-Hui Wang
Published in: ACS applied materials & interfaces (2022)
Circulating tumor cells (CTCs) are indicative of tumorigenesis, metastasis, and recurrence; however, it is still a great challenge to efficiently analyze the extremely rare CTCs in peripheral blood. Herein, a novel nanobiointerface integrating high affinities of arrayed silver nanorods (Ag NRs) and double-tetrahedral DNA (DTDN) probes by a clever strategy is proposed for the efficient capture, highly sensitive detection, and nondestructive release of CTCs. Under the optimal conditions, the DTDN-probe-functionalized Ag NRs nanobiointerface can capture 90.2% of SGC-7901 cells in PBS, and the capture efficiency is 2.8 times and 50 times those of a DTDN-probe-functionalized Ag film and unfunctionalized Ag NRs, respectively, benefiting from the nanorough interface of the Ag NRs array and multivalent recognition of the DTDN probe. In addition, 93.4% of cells was released via Zn 2+ -assisted DNAzyme cleavage, and the viability of the postreleased CTCs is about 98.0%. The potential practicality of the nanobiointerface for testing CTCs in blood was further characterized by spiking SGC-7901 cells in leukocytes collected from human blood, and the results show that 83.8% capture efficiency, 91.2% release efficiency, and single-cell detection limit were achieved, which indicates that the nanobiointerface has great potential in clinical applications for reliable CTC analyses.
Keyphrases