Login / Signup

Comparative study on efficiency of surface enhanced coal fly ash and raw coal fly ash for the removal of hazardous dyes in wastewater: optimization through response surface methodology.

Haris NadeemFaisal JamilMuhammad Adnan IqbalTan Wen NeeMuhammad KashifAhmad Hamdy IbrahimSawsan S Al-RawiSami Ullah ZiaUmar Sohail ShoukatRimsha KanwalFarhan AhmadSabha KhalidMuhammad Tjammal Rehman
Published in: RSC advances (2024)
Crystal violet (CV) dye, because of its non-biodegradability and harmful effects, poses a significant challenge for wastewater treatment. This study addresses the efficiency of easily accessible coal fly ash (CFA)-based adsorbents such as raw coal fly ash (RCFA) and surface enhanced coal fly ash (SECFA), in removing CV dye from waste effluents. Various analytical techniques such as FTIR, XRD, SEM, TEM, BET, zeta sizer and zeta potential were employed for the characterization of the adsorbents and dye-loaded samples. BET revealed that RCFA possesses a surface area of 19.370 m 2 g -1 and SECFA of 27.391 m 2 g -1 , exhibiting pore volumes of 0.1365 cm 3 g -1 and 0.1919 cm 3 g -1 respectively. Zeta-sizer and potential analysis showed the static charges of RCFA as -27.3 mV and SECFA as -28.2 mV, with average particle sizes of 346.6 and 315.3 nm, respectively. Langmuir and Freundlich adsorption isotherms were also employed for adsorption studies. Employing central composite design (CCD) of response surface methodology (RSM), the maximum CV removal was 81.52% for RCFA and 97.52% for SECFA, providing one minute contact time, 0.0125 g adsorbent dose and 10 ppm dye concentration. From the thermodynamic studies, all the negative values of Δ G ° showed that all the adsorption processes of both adsorbents were spontaneous in nature.
Keyphrases