Login / Signup

Palustrine forested wetland vegetation communities change across an elevation gradient, Washington State, USA.

Nate Hough-Snee
Published in: PeerJ (2020)
Forest overstory composition changed across the elevation gradient, with broad-leaved trees occupying a distinct hydrologic niche in low-lying areas close to the OHWM. Conifer species occurred higher above the OHWM on drier microsites. Pseudotsuga menziesii (mean elevation = 0.881 m) and Tsuga heterophylla (mean elevation = 1.737 m) were overstory indicator species of the WB, while Fraxinus latifolia (mean elevation = 0.005 m) was an overstory indicator for the upper and lower wetland. Understory vegetation differed between zones and lower zones' indicator species were generally hydrophytic species with adaptations that allow them to tolerate flooding stress at lower elevations. Average elevations above the OHWM are reported for 19 overstory trees and 61 understory plant species. By quantifying forested wetland plant species' affinities for different habitats across an inundation gradient, this study illustrates how rarely flooded, forested WB vegetation differs from frequently flooded, LW vegetation. Because common management applications, like restoring forested wetlands and managing wetland responses to forest harvest, are both predicated upon understanding how vegetation relates to hydrology, these data on where different species might establish and persist along an inundation gradient may be useful in planning for anticipated forested wetland responses to restoration and disturbance.
Keyphrases
  • climate change
  • wastewater treatment
  • genetic diversity
  • water quality
  • microbial community
  • electronic health record
  • stress induced