Login / Signup

Molecular Antioxidants Maintain Synergistic Radical Scavenging Activity upon Co-Immobilization on Clay Nanoplatelets.

Adél SzerlauthSzilárd VargaIstvan Szilagyi
Published in: ACS biomaterials science & engineering (2023)
Unbalanced levels of reactive oxygen species (ROS) result in oxidative stress, affecting both biomedical and industrial processes. Antioxidants can prevent ROS overproduction and thus delay or inhibit their harmful effects. Herein, activities of two molecular antioxidants (gallic acid (GA), a well-known phenolic compound, and nicotinamide adenine dinucleotide (NADH), a vital biological cofactor) were tested individually and in combination to assess possible synergistic, additive, or antagonistic effects in free radical scavenging and in redox capacity assays. GA was a remarkable radical scavenger, and NADH exhibited moderate antioxidant activity, while their combination at different molar ratios led to a synergistic effect since the resulting activity was superior to the sum of the individual GA and NADH activities. Their coimmobilization was performed on the surface of delaminated layered double hydroxide clay nanoplatelets by electrostatic interactions, and the synergistic effect was maintained upon such a heterogenization of these molecular antioxidants. The coimmobilization of GA and NADH expands the range of their potential applications, in which separation of antioxidant additives is important during treatments or manufacturing processes.
Keyphrases
  • pet ct
  • reactive oxygen species
  • oxidative stress
  • dna damage
  • cell death
  • wastewater treatment
  • ionic liquid
  • mass spectrometry
  • human health
  • ischemia reperfusion injury
  • liquid chromatography
  • induced apoptosis