Login / Signup

Gradient-based impedance synthesis for breast and lung cancer cell screening deploying planar and nano-structured electrodes.

Muhammad Awais AslamKashif RiazMuhammad Mubasher Saleem
Published in: Medical & biological engineering & computing (2021)
World Health Organization articulated 9.8 million casualties globally in 2018 due to cancer. Cancer, as the world's second most fatal disease, can be recuperated well if diagnosed at an early stage. In this work, a gradient-based impedance synthesis of normal and cancerous cells of breast and lungs, is demonstrated numerically for early-stage cancer detection. Low-voltage single-cell level examination is employed for indomitable diagnosis. MCF-7 and MCF-10A are utilized as breast cancer and breast normal cells, respectively; likewise, SK-MES and NL-20 are utilized as lung cancer and lung normal cell. Pre-examination numerical setup validity ensured with multiple test regimes. Micro-scaled planar and nano-structured electrodes are employed individually to witness the effect of the electrode's structure during electrical impedance examination of cancer and non-cancer cell. Frequency range, at which differential impedance effect is found detectable, for breast and lung cancer cell pairs is determined to be 107 Hz and 108 Hz, respectively. By surpassing the conventional impedance spectroscopy with tedious data fitting formalities, the gradient synthesis technique for cancer detection is introduced. The gradient synthesis for cancer detection is found independent of electrode shape effect. Gradient for breast cancer cell is found to be 2 times greater than the normal breast cell while for lung cancer cell it is found to be 1.5 times greater than the normal lung cell. Our results suggest that as the frequency of applied electrical stimulus increases, impedance of cancerous cell falls at the rate almost double than its counterpart normal cell. This work provides a theoretical basis for further experimental exploration of gradient-based impedance synthesis in cancer therapy and serves as a design tool for performance optimization. Figure 1 (a) Represents electrical Impedance analysis of breast normal cell MCF-10A and breast cancer cell MCF-7 using micro-scaled planar and nano-structured electrodes. (b) Gradient impedance synthesis performed, for breast normal cell (MCF-10A) and breast cancer cell (MCF-7) likewise for lungs normal cell (NL-20) and lungs cancer cell (SK-MES), which assures clear differential effect for cancer screening. Surpassing the conventional and tedious data fitting impedance spectroscopies, a novel gradient-based impedance spectroscopy for early cancer detection is introduced. It clearly detects cancer without any data fitting formalities to find parameter of identification. Planar and nano structure electrodes are used to witness the impact of electrode shape on cell impedance. Breast normal MCF-10A and cancer cell MCF-7 as well as lungs normal NL-20 and cancer cell SK-MES are examined to reflect the efficacy of our work. Single cell level examination is performed for authenticated results.
Keyphrases