Login / Signup

Systolic Time Interval Extraction in Hypertensive and Hypotensive Pig Models Using Wearable Near-Field Radio-Frequency Sensors.

Thomas B ConroyJoaquin AraosEdwin C Kan
Published in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference (2024)
Screening and monitoring for cardiovascular diseases (CVDs) can be enabled by analyzing systolic time intervals (STIs). As CVDs have a strong causal correlation with hypertension, it is important to validate STI sensor accuracy in hypertensive hearts to ensure consistent performance in this prevalent cardiac disease state. This work presents STI extraction using a non-invasive near-field radio-frequency (RF) sensor during normotension, hypertension, and hypotension in a pig model. Waveform features of semilunar and atrioventricular valve dynamics during systole were extracted to derive isovolumic contraction time (ICT) and left ventricular ejection time (LVET), benchmarked by a phonocardiogram and aortic catheterization. Study-wide mean relative ICT and LVET errors were -4.4ms and -3.6ms, respectively, demonstrating high accuracy during both normal and abnormal systemic pressures.Clinical relevance- This work demonstrates accurate STI extraction with relative error less than 5 ms from a non-invasive near-field RF sensor during normotensive, hypotensive, and hypertensive systemic pressures, validating the sensor's accuracy as a screening tool during this disease state.
Keyphrases