Login / Signup

Solvent-Induced Molecular Folding and Self-Assembled Nanostructures of Tyrosine and Tryptophan Analogues in Aqueous Solution: Fascinating Morphology of High Order.

Gulmi ChakrabortyMadhurima Paul ChowdhurySwapan K Saha
Published in: Langmuir : the ACS journal of surfaces and colloids (2017)
Hydrophobic derivatives of tyrosine and tryptophan, viz. octyl and dodecyl esters of tyrosine and octyl ester of tryptophan, are synthesized, and the interfacial and bulk properties in aqueous media are investigated as models for the membrane proteins. Molecular modeling by the density functional theory method is carried out to understand the molecular conformation and geometry for the purpose of determining the packing parameters. Water-induced molecular folding of the esters of both tyrosine and tryptophan, as observed using rotating frame nuclear Overhauser effect spectroscopy, indicates that the segregation of the hydrophobic and hydrophilic blocks in water is the key to the development of fascinating interfacial property displayed by the aromatic amino acid esters. The unusually high-order morphology of the aggregates, as observed using high-resolution transmission electron microscopy, is highly uncommon for single-chain amphiphiles and points to the fact that the self-assembly behavior of the present systems resembles that of block copolymers. The study of the growth of mesosized hollow aggregates with internal bilayer structures from tyrosine and tryptophan-based model systems would add to the understanding of biochemistry and biotechnology relevant to the cell membrane. The potential of biocompatible nanostructured motifs as the drug carriers is discussed. The highly functional role played by the aromatic amino acids at the membrane-water interface will be considered with the present amphiphilic models for future perspective.
Keyphrases