Login / Signup

Prevalence, Morpho-Histopathological Identification, Clinical Picture, and the Role of Lernanthropus kroyeri to Alleviate the Zinc Toxicity in Moron labrax .

Attia A Abou ZaidRehab R Abd El MagedNesma RasheedDina Mohamed MansourHeba H MahboubHany M Abd El-LateefJean Marc SabatierHebatallah M SaadGaber El-Saber BatihaMichel De Waard
Published in: Pathogens (Basel, Switzerland) (2022)
The present context is a pioneer attempt to verify the ability of copepod, Lernanthropus kroyeri (L. kroyeri), to uptake and accumulate heavy metals. We primarily assess the prevalence of the parasite in various seasons and its clinical signs, as well as post-mortem changes in sea bass ( Moron labrax ). The morphological features of the parasite using a light microscope, the bioaccumulation of heavy metals in the tissues of both L. kroyeri and M. labrax (gills, muscles) using Flame Atomic Absorption Spectrometry, and the histopathological alterations were monitored. Fish (n = 200) were obtained from Ezbet Elborg and examined for the parasite, L. kroyeri . The results revealed that the total infection was recorded at 86%. The infested fish exhibited excessive mucous and ulceration at the site of attachment. The post-mortem lesion in the gills revealed a marbling appearance with destructed filaments. Various heavy metals (Zn, Co, Cu, and Cd) were detected in the tissues of L. kroyeri and M. labrax and, surprisingly, L. kroyeri had the ability to uptake and accumulate a high amount of Zn in its tissues. Infested fish accumulated a lower concentration of Zn in their tissue compared with the non-infested ones. Within the host tissue, the accumulation of Zn was higher in the gills compared with the muscles. The histopathological findings demonstrated scattered parasitic elements with the destruction of the gill lamellae. Taken together, we highlight the potential role of L. kroyeri to eliminate Zn and it can be utilized as a bio-indicator for metal monitoring studies for sustaining aquaculture.
Keyphrases