Login / Signup

Combating Glioblastoma by Codelivering the Small-Molecule Inhibitor of STAT3 and STAT3siRNA with α5β1 Integrin Receptor-Selective Liposomes.

Venugopal VangalaNarendra Varma NimmuSara KhalidMadhusudana KunchaRamakrishna SistlaRajkumar BanerjeeArabinda Chaudhuri
Published in: Molecular pharmaceutics (2020)
Glioblastoma multiforme (GBM) is one of the most aggressive tumors with a median survival of only 15 months. Effective therapeutics need to overcome the formidable challenge of crossing the blood-brain barrier (BBB). Receptors and transporters overexpressed on BCECs are being used for designing liposomes, polymers, polymeric micelles, peptides, and dendrimer-based drug carriers for combating brain tumors. Herein, using the orthotopic mouse glioblastoma model, we show that codelivering a small-molecule inhibitor of the JAK/STAT pathway (WP1066) and STAT3siRNA with nanometric (100-150 nm) α5β1 integrin receptor-selective liposomes of RGDK-lipopeptide holds therapeutic promise in combating glioblastoma. Rh-PE (red)-labeled liposomes of RGDK-lipopeptide were found to be internalized in GL261 cells via integrin α5β1 receptors. Intravenously administered near-infrared (NIR)-dye-labeled α5β1 integrin receptor-selective liposomes of RGDK-lipopeptide were found to be accumulated preferentially in the mouse brain tumor tissue. Importantly, we show that iv injection of WP1066 (a commercially sold small-molecule inhibitor of the JAK/STAT pathway) and STAT3siRNA cosolubilized within the liposomes of RGDK-lipopeptide leads to significant inhibition (>350% compared to the untreated mice group) of orthotopically growing mouse glioblastoma. The present strategy may find future use in combating GBM.
Keyphrases