Rapidly Blocking the Calcium Overload/ROS Production Feedback Loop to Alleviate Acute Kidney Injury via Microenvironment-Responsive BAPTA-AM/BAC Co-Delivery Nanosystem.
Jiahui YanYanan WangJingwen ZhangXiaohu LiuLiangmin YuZhiyu HePublished in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Calcium overload and ROS overproduction, two major triggers of acute kidney injury (AKI), are self-amplifying and mutually reinforcing, forming a complicated cascading feedback loop that induces kidney cell "suicide" and ultimately renal failure. There are currently no clinically effective drugs for the treatment of AKI, excluding adjuvant therapy. In this study, a porous silicon-based nanocarrier rich in disulfide bond skeleton (<50 nm) is developed that enables efficient co-loading of the hydrophilic drug borane amino complex and the hydrophobic drug BAPTA-AM, with its outer layer sealed by the renal tubule-targeting peptide PEG-LTH. Once targeted to the kidney injured site, the nanocarrier structure collapses in the high glutathione environment of the early stage of AKI, releasing the drugs. Under the action of the slightly acidic inflammatory environment and intracellular esterase, the released drugs produce hydrogen and BAPTA, which can rapidly eliminate the excess ROS and overloaded Ca 2+ , blocking endoplasmic reticulum/mitochondrial apoptosis pathway (ATF4-CHOP-Bax axis, Casp-12-Casp-3 axis, Cyt-C-Casp-3 axis) and inflammatory pathway (TNF-α-NF-κB axis) from the source, thus rescuing the renal cells in the "critical survival" state and further restoring the kidney function. Overall, this nanoparticle shows substantial clinical promise as a potential therapeutic strategy for I/R injury-related diseases.
Keyphrases
- acute kidney injury
- oxidative stress
- cardiac surgery
- cell death
- induced apoptosis
- cell cycle arrest
- drug delivery
- early stage
- reactive oxygen species
- cancer therapy
- endoplasmic reticulum
- dna damage
- endoplasmic reticulum stress
- transcription factor
- drug induced
- signaling pathway
- ionic liquid
- big data
- emergency department
- stem cells
- squamous cell carcinoma
- pi k akt
- lps induced
- mass spectrometry
- deep learning
- liquid chromatography
- radiation therapy
- toll like receptor
- solid phase extraction
- high resolution
- sentinel lymph node