Association Between Back Muscle Strength and Proprioception or Mechanoreceptor Control Strategy in Postural Balance in Elderly Adults with Lumbar Spondylosis.
Tadashi ItoYoshihito SakaiYohei ItoKazunori YamazakiYoshifumi MoritaPublished in: Healthcare (Basel, Switzerland) (2020)
This study aimed to investigate the relationship between back muscle strength and proprioception or mechanoreceptor control strategies used for postural balance in elderly adults with lumbar spondylosis. The displacement of the center of pressure (COP) excursion was determined in 24 elderly adults with lumbar spondylosis and 24 healthy young adults while the participants were standing upright on a balance board with their eyes closed. Vibratory stimulations of 30, 60, and 240 Hz were applied to the gastrocnemius (GS) and lumbar multifidus (LM) muscles to evaluate the effect of different proprioceptive signals on postural control. Back muscle strength was evaluated. Spearman's rank correlation analysis was performed to determine the relationship between back muscle strength and significant COP excursion. Compared with young adults, elderly adults with lumbar spondylosis showed an increase in COP excursion displacement when a vibratory stimulation of 240 Hz was applied to the GS (P = 0.002) and LM muscles (P < 0.001). LM stimulation at 240 Hz was significantly associated with back muscle strength (P = 0.038). Postural control assessment with 240-Hz mechanoreceptor stimulation of the trunk could be a good indicator of postural instability due to over-dependence on mechanoreceptors and back muscle weakness in elderly adults with lumbar spondylosis.