Comparative study on supercapacitive and oxygen evolution reaction applications of hollow nanostructured cobalt sulfides.
Yimeng SunChen LiSubin JiangRui XiaXing WangHaifeng BaoMeizhen GaoPublished in: Nanotechnology (2021)
Due to the diversity of sulfur valence in cobalt-based sulfides, it is difficult to control the crystal phase and composition of the products during synthesis. Herein, a one-pot hydrothermal method is reported to self-assemble the cobalt sulfides (CoS2, Co9S8and Co3S4) with hollow nanostructures. The whole preparation process is simple and mild, avoiding high temperature calcination. The performances of the three kinds of cobalt sulfide in superior supercapacitors and electrocatalytic oxygen evolution performance applications follow the order of CoS2 > Co9S8 > Co3S4. Further analysis demonstrates that the performance difference in these cobalt sulfides may be attributed to three factors: the presence ofS22-,the coordination environment of Co and the presence of continuous network of Co-Co bonds. The distinctive electrochemical performance of CoS2and Co9S8may help us to better understand the excellent electrochemical activity of metal polysulfides and metal sulfides after doping or alloying. Therefore, this work may provide a reference in understanding and designing the electrode materials for highly efficient applications in the fields of energy storage and conversion.