Application and evaluation of a low-cost PM sensor and data fusion with CMAQ simulations to quantify the impacts of prescribed burning on air quality in Southwestern Georgia, USA.
Ran HuangRaj M LalMomei QinYongtao HuArmistead G RussellMehmet Talat OdmanSadia AfrinFernando Garcia-MenendezSusan M O'NeillPublished in: Journal of the Air & Waste Management Association (1995) (2021)
Prescribed burning (PB) is a prominent source of PM2.5 in the southeastern US and exposure to PB smoke is a health risk. As demand for burning increases and stricter controls are implemented for other anthropogenic sources, PB emissions tend to be responsible for an increasing fraction of PM2.5 concentrations. Here, to quantify the effect of PB on air quality, low-cost sensors are used to measure PM2.5 concentrations in Southwestern Georgia. The feasibility of using low-cost sensors as a supplemental measurement tool is evaluated by comparing them with reference instruments. A chemical transport model, CMAQ, is also used to simulate the contribution of PB to PM2.5 concentrations. Simulated PM2.5 concentrations are compared to observations from both low-cost sensors and reference monitors. Finally, a data fusion method is applied to generate hourly spatiotemporal exposure fields by fusing PM2.5 concentrations from the CMAQ model and all observations. The results show that the severe impact of PB on local air quality and public health may be missed due to the dearth of regulatory monitoring sites. In Southwestern Georgia PM2.5 concentrations are highly non-homogeneous and the spatial variation is not captured even with a 4-km horizontal resolution in model simulations. Low-cost PM sensors can improve the detection of PB impacts and provide useful spatial and temporal information for integration with air quality models. R2 of regression with observations increases from an average of 0.09 to 0.40 when data fusion is applied to model simulation withholding the observations at the evaluation site. Adding observations from low-cost sensors reduces the underestimation of nighttime PM2.5 concentrations and reproduces the peaks that are missed by the simulations. In the future, observations from a dense network of low-cost sensors could be fused with the model simulated PM2.5 fields to provide better estimates of hourly exposures to smoke from PB.Implications: Prescribed burning emissions are a major cause of elevated PM2.5 concentrations, posing a risk to human health. However, their impact cannot be quantified properly due to a dearth of regulatory monitoring sites in certain regions of the United States such as Southwestern Georgia. Low-cost PM sensors can be used as a supplemental measurement tool and provide useful spatial and temporal information for integration with air quality model simulations. In the future, data from a dense network of low-cost sensors could be fused with model simulated PM2.5 fields to provide improved estimates of hourly exposures to smoke from prescribed burning.