Human Spinal Oligodendrogenic Neural Progenitor Cells Enhance Pathophysiological Outcomes and Functional Recovery in a Clinically Relevant Cervical Spinal Cord Injury Rat Model.
Katarzyna PieczonkaHiroaki NakashimaNarihito NagoshiKazuya YokotaJames HongAnna BadnerJonathon C T ChioShinsuke ShibataMohamad KhazaeiMichael G FehlingsPublished in: Stem cells translational medicine (2023)
Traumatic spinal cord injury (SCI) results in the loss of neurons, oligodendrocytes, and astrocytes. Present interventions for SCI include decompressive surgery, anti-inflammatory therapies, and rehabilitation programs. Nonetheless, these approaches do not offer regenerative solutions to replace the lost cells, fiber tracts, and circuits. Neural stem/progenitor cell (NPC) transplantation is a promising strategy that aims to encourage regeneration. However, NPC differentiation remains inconsistent, thus, contributing to suboptimal functional recovery. As such, we have previously engineered oligodendrogenically biased NPCs (oNPCs) and demonstrated their efficacy in a thoracic model of SCI. Since the majority of patients with SCI experience cervical injuries, our objective in the current study was to generate human induced pluripotent stem cell-derived oNPCs (hiPSC-oNPCs) and to characterize these cells in vitro and in vivo, utilizing a clinically relevant rodent model of cervical SCI. Following transplantation, the oNPCs engrafted, migrated to the rostral and caudal regions of the lesion, and demonstrated preferential differentiation toward oligodendrocytes. Histopathological evaluations revealed that oNPC transplantation facilitated tissue preservation while diminishing astrogliosis. Moreover, oNPC transplantation fostered remyelination of the spared tissue. Functional analyses indicated improved forelimb grip strength, gait, and locomotor function in the oNPC-transplanted rats. Importantly, oNPC transplantation did not exacerbate neuropathic pain or induce tumor formation. In conclusion, these findings underscore the therapeutic potential of oNPCs in promoting functional recovery and histopathological improvements in cervical SCI. This evidence warrants further investigation to optimize and advance this promising cell-based therapeutic approach.
Keyphrases
- spinal cord injury
- neuropathic pain
- spinal cord
- cell therapy
- endothelial cells
- induced apoptosis
- stem cells
- cell cycle arrest
- single cell
- minimally invasive
- induced pluripotent stem cells
- mesenchymal stem cells
- physical activity
- public health
- cell death
- endoplasmic reticulum stress
- coronary artery bypass
- traumatic brain injury
- adipose tissue
- acute coronary syndrome
- insulin resistance
- diabetic rats
- atrial fibrillation
- percutaneous coronary intervention