Login / Signup

Maladaptation of renal hemodynamics contributes to kidney dysfunction resulting from thoracic spinal cord injury in mice.

Patrick Osei-OwusuEileen CollyerShelby A DahlenRaisa E AdamsVeronica J Tom
Published in: American journal of physiology. Renal physiology (2022)
Renal dysfunction is a hallmark of spinal cord injury (SCI). Several SCI sequalae are implicated; however, the exact pathogenic mechanism of renal dysfunction is unclear. Herein, we found that T3 (T3Tx) or T10 (T10Tx) complete thoracic spinal cord transection induced hypotension, bradycardia, and hypothermia immediately after injury. T3Tx-induced hypotension but not bradycardia or hypothermia slowly recovered to levels in T10Tx SCI and uninjured mice ∼16 h after injury as determined by continuous radiotelemetry monitoring. Both types of thoracic SCI led to a marked decrease in albuminuria and proteinuria in all phases of SCI, whereas the kidney injury marker neutrophil gelatinase-associated lipocalin rapidly increased in the acute phase, remaining elevated in the chronic phase of T3Tx SCI. Renal interstitial and vascular elastin fragmentation after SCI were worsened during chronic T3Tx SCI. In the chronic phase, renal vascular resistance response to a step increase in renal perfusion pressure or a bolus injection of angiotensin II or norepinephrine was almost completely abolished after T3Tx SCI. Bulk RNA-sequencing analysis showed enrichment of genes involved in extracellular matrix remodeling and chemokine signaling in the kidney from T3Tx SCI mice. The serum level of interleukin-6 was elevated in the acute but not chronic phase of T3Tx and T10Tx SCI, whereas the serum amyloid A1 level was elevated in both acute and chronic phases. We conclude that tissue fibrosis and hemodynamic impairment are involved in renal dysfunction resulting from thoracic SCI; these pathological alterations, exacerbated by high thoracic-level injury, is mediated at least partly by renal microvascular extracellular matrix remodeling. NEW & NOTEWORTHY Urinary complications resulting from thoracic spinal cord injury (SCI) greatly affects quality of life and contributes to morbidity and mortality in patients with SCI. Herein, we showed that thoracic SCI initiates changes in the structure and function of the renal microvasculature that leads to autoregulation failure in the chronic phase of high thoracic-level injury. Our study identified extracellular matrix regulators and cytokine/chemokine signaling as potential targets for developing novel therapeutics for restoring renal function following SCI.
Keyphrases